Copied to
clipboard

?

G = C4218D14order 448 = 26·7

18th semidirect product of C42 and D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4218D14, C14.1242+ (1+4), (C4×D7)⋊4D4, C4.32(D4×D7), (C2×Q8)⋊18D14, C4.4D48D7, C28.61(C2×D4), C28⋊D424C2, C4⋊D2814C2, (C4×C28)⋊22C22, C22⋊C420D14, D14.45(C2×D4), (C2×D28)⋊9C22, C22⋊D2823C2, D14⋊D439C2, D14⋊C423C22, (C2×D4).171D14, C42⋊D719C2, Dic7.50(C2×D4), (Q8×C14)⋊12C22, C14.88(C22×D4), C28.23D421C2, (C2×C14).218C24, (C2×C28).186C23, Dic7⋊C455C22, C74(C22.29C24), (C4×Dic7)⋊35C22, C2.48(D48D14), C23.40(C22×D7), (D4×C14).153C22, (C22×C14).48C23, (C23×D7).63C22, C22.239(C23×D7), (C2×Dic7).113C23, (C22×D7).213C23, (C2×D4×D7)⋊16C2, C2.61(C2×D4×D7), (C2×C4×D7)⋊25C22, (C2×Q82D7)⋊10C2, (C7×C4.4D4)⋊10C2, (C2×C7⋊D4)⋊22C22, (C7×C22⋊C4)⋊28C22, (C2×C4).193(C22×D7), SmallGroup(448,1127)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C4218D14
C1C7C14C2×C14C22×D7C23×D7C2×D4×D7 — C4218D14
C7C2×C14 — C4218D14

Subgroups: 2092 in 334 conjugacy classes, 103 normal (29 characteristic)
C1, C2, C2 [×2], C2 [×8], C4 [×2], C4 [×8], C22, C22 [×30], C7, C2×C4, C2×C4 [×4], C2×C4 [×11], D4 [×22], Q8 [×2], C23 [×2], C23 [×13], D7 [×6], C14, C14 [×2], C14 [×2], C42, C42, C22⋊C4 [×4], C22⋊C4 [×6], C4⋊C4 [×2], C22×C4 [×3], C2×D4, C2×D4 [×18], C2×Q8, C4○D4 [×4], C24 [×2], Dic7 [×2], Dic7 [×2], C28 [×2], C28 [×4], D14 [×2], D14 [×22], C2×C14, C2×C14 [×6], C42⋊C2, C22≀C2 [×4], C4⋊D4 [×4], C4.4D4, C4.4D4, C41D4 [×2], C22×D4, C2×C4○D4, C4×D7 [×4], C4×D7 [×4], D28 [×12], C2×Dic7, C2×Dic7 [×2], C7⋊D4 [×8], C2×C28, C2×C28 [×4], C7×D4 [×2], C7×Q8 [×2], C22×D7, C22×D7 [×4], C22×D7 [×8], C22×C14 [×2], C22.29C24, C4×Dic7, Dic7⋊C4 [×2], D14⋊C4 [×6], C4×C28, C7×C22⋊C4 [×4], C2×C4×D7, C2×C4×D7 [×2], C2×D28 [×2], C2×D28 [×6], D4×D7 [×4], Q82D7 [×4], C2×C7⋊D4 [×6], D4×C14, Q8×C14, C23×D7 [×2], C42⋊D7, C4⋊D28, C22⋊D28 [×4], D14⋊D4 [×4], C28⋊D4, C28.23D4, C7×C4.4D4, C2×D4×D7, C2×Q82D7, C4218D14

Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D7, C2×D4 [×6], C24, D14 [×7], C22×D4, 2+ (1+4) [×2], C22×D7 [×7], C22.29C24, D4×D7 [×2], C23×D7, C2×D4×D7, D48D14 [×2], C4218D14

Generators and relations
 G = < a,b,c,d | a4=b4=c14=d2=1, ab=ba, cac-1=dad=a-1, cbc-1=a2b-1, dbd=b-1, dcd=c-1 >

Smallest permutation representation
On 112 points
Generators in S112
(1 100 17 107)(2 108 18 101)(3 102 19 109)(4 110 20 103)(5 104 21 111)(6 112 15 105)(7 106 16 99)(8 83 27 76)(9 77 28 84)(10 71 22 78)(11 79 23 72)(12 73 24 80)(13 81 25 74)(14 75 26 82)(29 63 56 91)(30 92 43 64)(31 65 44 93)(32 94 45 66)(33 67 46 95)(34 96 47 68)(35 69 48 97)(36 98 49 70)(37 57 50 85)(38 86 51 58)(39 59 52 87)(40 88 53 60)(41 61 54 89)(42 90 55 62)
(1 56 23 36)(2 50 24 30)(3 44 25 38)(4 52 26 32)(5 46 27 40)(6 54 28 34)(7 48 22 42)(8 53 21 33)(9 47 15 41)(10 55 16 35)(11 49 17 29)(12 43 18 37)(13 51 19 31)(14 45 20 39)(57 73 64 101)(58 109 65 81)(59 75 66 103)(60 111 67 83)(61 77 68 105)(62 99 69 71)(63 79 70 107)(72 98 100 91)(74 86 102 93)(76 88 104 95)(78 90 106 97)(80 92 108 85)(82 94 110 87)(84 96 112 89)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 2)(3 7)(4 6)(9 14)(10 13)(11 12)(15 20)(16 19)(17 18)(22 25)(23 24)(26 28)(29 43)(30 56)(31 55)(32 54)(33 53)(34 52)(35 51)(36 50)(37 49)(38 48)(39 47)(40 46)(41 45)(42 44)(57 98)(58 97)(59 96)(60 95)(61 94)(62 93)(63 92)(64 91)(65 90)(66 89)(67 88)(68 87)(69 86)(70 85)(71 74)(72 73)(75 84)(76 83)(77 82)(78 81)(79 80)(99 102)(100 101)(103 112)(104 111)(105 110)(106 109)(107 108)

G:=sub<Sym(112)| (1,100,17,107)(2,108,18,101)(3,102,19,109)(4,110,20,103)(5,104,21,111)(6,112,15,105)(7,106,16,99)(8,83,27,76)(9,77,28,84)(10,71,22,78)(11,79,23,72)(12,73,24,80)(13,81,25,74)(14,75,26,82)(29,63,56,91)(30,92,43,64)(31,65,44,93)(32,94,45,66)(33,67,46,95)(34,96,47,68)(35,69,48,97)(36,98,49,70)(37,57,50,85)(38,86,51,58)(39,59,52,87)(40,88,53,60)(41,61,54,89)(42,90,55,62), (1,56,23,36)(2,50,24,30)(3,44,25,38)(4,52,26,32)(5,46,27,40)(6,54,28,34)(7,48,22,42)(8,53,21,33)(9,47,15,41)(10,55,16,35)(11,49,17,29)(12,43,18,37)(13,51,19,31)(14,45,20,39)(57,73,64,101)(58,109,65,81)(59,75,66,103)(60,111,67,83)(61,77,68,105)(62,99,69,71)(63,79,70,107)(72,98,100,91)(74,86,102,93)(76,88,104,95)(78,90,106,97)(80,92,108,85)(82,94,110,87)(84,96,112,89), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,2)(3,7)(4,6)(9,14)(10,13)(11,12)(15,20)(16,19)(17,18)(22,25)(23,24)(26,28)(29,43)(30,56)(31,55)(32,54)(33,53)(34,52)(35,51)(36,50)(37,49)(38,48)(39,47)(40,46)(41,45)(42,44)(57,98)(58,97)(59,96)(60,95)(61,94)(62,93)(63,92)(64,91)(65,90)(66,89)(67,88)(68,87)(69,86)(70,85)(71,74)(72,73)(75,84)(76,83)(77,82)(78,81)(79,80)(99,102)(100,101)(103,112)(104,111)(105,110)(106,109)(107,108)>;

G:=Group( (1,100,17,107)(2,108,18,101)(3,102,19,109)(4,110,20,103)(5,104,21,111)(6,112,15,105)(7,106,16,99)(8,83,27,76)(9,77,28,84)(10,71,22,78)(11,79,23,72)(12,73,24,80)(13,81,25,74)(14,75,26,82)(29,63,56,91)(30,92,43,64)(31,65,44,93)(32,94,45,66)(33,67,46,95)(34,96,47,68)(35,69,48,97)(36,98,49,70)(37,57,50,85)(38,86,51,58)(39,59,52,87)(40,88,53,60)(41,61,54,89)(42,90,55,62), (1,56,23,36)(2,50,24,30)(3,44,25,38)(4,52,26,32)(5,46,27,40)(6,54,28,34)(7,48,22,42)(8,53,21,33)(9,47,15,41)(10,55,16,35)(11,49,17,29)(12,43,18,37)(13,51,19,31)(14,45,20,39)(57,73,64,101)(58,109,65,81)(59,75,66,103)(60,111,67,83)(61,77,68,105)(62,99,69,71)(63,79,70,107)(72,98,100,91)(74,86,102,93)(76,88,104,95)(78,90,106,97)(80,92,108,85)(82,94,110,87)(84,96,112,89), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,2)(3,7)(4,6)(9,14)(10,13)(11,12)(15,20)(16,19)(17,18)(22,25)(23,24)(26,28)(29,43)(30,56)(31,55)(32,54)(33,53)(34,52)(35,51)(36,50)(37,49)(38,48)(39,47)(40,46)(41,45)(42,44)(57,98)(58,97)(59,96)(60,95)(61,94)(62,93)(63,92)(64,91)(65,90)(66,89)(67,88)(68,87)(69,86)(70,85)(71,74)(72,73)(75,84)(76,83)(77,82)(78,81)(79,80)(99,102)(100,101)(103,112)(104,111)(105,110)(106,109)(107,108) );

G=PermutationGroup([(1,100,17,107),(2,108,18,101),(3,102,19,109),(4,110,20,103),(5,104,21,111),(6,112,15,105),(7,106,16,99),(8,83,27,76),(9,77,28,84),(10,71,22,78),(11,79,23,72),(12,73,24,80),(13,81,25,74),(14,75,26,82),(29,63,56,91),(30,92,43,64),(31,65,44,93),(32,94,45,66),(33,67,46,95),(34,96,47,68),(35,69,48,97),(36,98,49,70),(37,57,50,85),(38,86,51,58),(39,59,52,87),(40,88,53,60),(41,61,54,89),(42,90,55,62)], [(1,56,23,36),(2,50,24,30),(3,44,25,38),(4,52,26,32),(5,46,27,40),(6,54,28,34),(7,48,22,42),(8,53,21,33),(9,47,15,41),(10,55,16,35),(11,49,17,29),(12,43,18,37),(13,51,19,31),(14,45,20,39),(57,73,64,101),(58,109,65,81),(59,75,66,103),(60,111,67,83),(61,77,68,105),(62,99,69,71),(63,79,70,107),(72,98,100,91),(74,86,102,93),(76,88,104,95),(78,90,106,97),(80,92,108,85),(82,94,110,87),(84,96,112,89)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,2),(3,7),(4,6),(9,14),(10,13),(11,12),(15,20),(16,19),(17,18),(22,25),(23,24),(26,28),(29,43),(30,56),(31,55),(32,54),(33,53),(34,52),(35,51),(36,50),(37,49),(38,48),(39,47),(40,46),(41,45),(42,44),(57,98),(58,97),(59,96),(60,95),(61,94),(62,93),(63,92),(64,91),(65,90),(66,89),(67,88),(68,87),(69,86),(70,85),(71,74),(72,73),(75,84),(76,83),(77,82),(78,81),(79,80),(99,102),(100,101),(103,112),(104,111),(105,110),(106,109),(107,108)])

Matrix representation G ⊆ GL8(𝔽29)

280000000
028000000
00100000
00010000
00000010
00000001
000028000
000002800
,
280000000
028000000
00010000
002800000
00000100
000028000
00000001
000000280
,
184000000
254000000
00100000
000280000
00001000
00000100
000000280
000000028
,
028000000
280000000
002800000
00010000
00001000
000002800
000000280
00000001

G:=sub<GL(8,GF(29))| [28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0],[18,25,0,0,0,0,0,0,4,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28],[0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,1] >;

64 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K4A4B4C4D4E4F4G4H4I4J7A7B7C14A···14I14J···14O28A···28R28S···28X
order122222222222444444444477714···1414···1428···2828···28
size111144141428282828224444141428282222···28···84···48···8

64 irreducible representations

dim1111111111222222444
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2D4D7D14D14D14D142+ (1+4)D4×D7D48D14
kernelC4218D14C42⋊D7C4⋊D28C22⋊D28D14⋊D4C28⋊D4C28.23D4C7×C4.4D4C2×D4×D7C2×Q82D7C4×D7C4.4D4C42C22⋊C4C2×D4C2×Q8C14C4C2
# reps111441111143312332612

In GAP, Magma, Sage, TeX

C_4^2\rtimes_{18}D_{14}
% in TeX

G:=Group("C4^2:18D14");
// GroupNames label

G:=SmallGroup(448,1127);
// by ID

G=gap.SmallGroup(448,1127);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,219,675,570,297,192,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a^-1,c*b*c^-1=a^2*b^-1,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽